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There is considerable interest in turbulence modeling of vortical structures.  The 
most fundamental of all such structures is the line, or columnar, vortex.  Many 
laminar flow solutions of line vortices have been reported in the literature.  Only a 
few analytical treatments have been presented for turbulent line vortex modeling.  
More contemporary predictive work has focused on performing highly refined 
higher-order CFD predictions of vortices for specific areas of interest -- in 
particular, examining wing/blade-tip trailed vortex roll-up or far-field wake 
temporal evolution.  In almost all cases, the turbulence closure models are not 
necessarily well suited for the high gradients and rotational effects typical of 
wing/rotor trailed tip vortices.  Recently, though, there have been a number of 
computational studies of turbulent vortices that have adopted highly sophisticated 
direct numerical simulations of the unsteady Navier-Stokes momentum equations.  
This work in particular has been very promising in terms of understanding not only 
the mean flow behavior of turbulent vortices but their higher-modal characteristics 
as well.  Nonetheless, there remains much still to learn about turbulent vortices in 
general.  In particular, the transition flow mechanism from laminar to fully 
turbulent vortex states is still largely undetermined.  A new analytical approach is 
suggested in this paper.  The result is progress towards a turbulent line vortex 
model that captures many of the flow features previously observed, predicted, 
and/or conjectured about this fundamental building block of the vortical fluid flow, 
including, most importantly, the transition from laminar to turbulent flow states.    

 
Nomenclature 

 

! 

r
•  Nondimensional radial coordinate, 

! 

r
•

= r rc0  

! 

rc0  “Finite core” vortex filament core size radius (at time equal to zero), m 
Re Vortex Reynolds number, 

! 

Re = " #  

! 

t
•  Nondimensional time parameter, 

! 

t
•

= "t rc0
2  

! 

V  Velocity vector, cylindrical coordinates, 

! 

V = vr v" vz[ ] , m/sec 

! 

v"
•  Nondimensional tangential velocity, 

! 

v"
•

= rc0v" #  

! 

z
•  Nondimensional axial coordinate, 

! 

z
•

= z rc0  

!  Vortex filament initial circulation strength, m2/sec 
!  Kinematic viscosity, m2/sec 
!  Angular coordinate, radians 

! 

"  Vorticity vector, 

! 

" = "r "# "z[ ] , 1/sec 
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I. Introduction 
 

HE formation and evolution of vortices shed/trailed from fixed- and rotary-wing aircraft continues to 
be an area of considerable research interest.  Despite the advance of sophisticated and computationally 

intensive analysis tools, the study of these fundamental vortical fluid flow structures is, as yet, still 
incomplete.  The study of line vortices reaches back over a century of investigation – originating with the 
pioneering work of Helmholtz, Kelvin, Rankine, Lamb, Oseen, and many others (for surveys of this classic 
work, see Refs. 1-2, for example).  Still progress made in this area, though substantial, has also been 
comparatively slow.  Turbulent vortical flow structure consequently remains an active area of research 
investigation.   Recently, investigations carried out with variants of DNS (Direct Numerical Simulation) 
and LES (Large Eddy Simulation) Navier-Stokes CFD (Computational Fluid Dynamics) solutions have, in 
particular, begun to shed some light upon some of the remaining ill-understood issues regarding the 
evolution of turbulent vortices and other vortical structures (e.g. Ref. 3).   

 
Why is this still an important area of investigation from an engineering perspective, though?  Even with 

the advances made possible with modern computational power, there is still much to learn.  First of all, an 
improved understanding of vortical flow structures continues to be essential for the understanding of the 
aerodynamic performance of aerial vehicles and, therefore, their design.  Many comprehensive engineering 
analyses for rotary-wing aerial vehicles, for example, are still based upon free-wake predictions 
incorporating fairly simple vortex models that derive considerable heritage from classic work in laminar 
vortex solutions.  CFD-based predictions of aerial vehicle wake structures are rapidly superceding free-
wake predictions, but there are still significant limitations/trade-offs required in terms of grid resolution and 
accounting for numerical/artificial dissipation effects influencing the predicted spatiotemporal evolution of 
the trailed tip vortices and other vortical structures in the rotary-wing wake.   Second, the transition flow 
mechanisms from laminar to fully turbulent vortex states are still poorly understood for trailed vortices.  
Laminar to turbulent vortex transition is a particularly crucial issue for the emerging field of rotary-wing 
UAVs and/or the proper interpretation and application of small-scale model rotor data to full-scale vehicles.   
Third, the theoretically most accurate current means of predicting vortex evolution, DNS and LES Navier-
Stokes CFD solutions, are still prohibitively expensive in terms of time and computational resources to be 
directly applied on a routine basis to engineering design and analysis problems.  There must, instead, be 
some efficient means of capturing the essential flow behavior from these sophisticated but computationally 
expensive CFD investigations and arriving at refined engineering-analysis-compatible vortex models for 
pragmatic design and development problems.   

 
The intent of this paper is, therefore, to undertake the study of turbulent line vortices by means of an 

approximate but analytical treatment versus a wholly computational/numerical study.   
 
 

II. Initial Analysis Framework 
 
The analysis presented in this paper builds upon earlier work related to deriving exact analytical 

solutions for a small family of laminar columnar (line) vortices as well as additional work detailing an 
approximate three-dimensional analysis technique applicable to the unsteady viscous Helmholtz vorticity 
transport equation, referred to as the length scale factor (LSF) methodology, Refs. 4-7.   

 
Earlier work presented in Refs. 4-5 detailed the derivation and predicted results, respectively, of an 

exact Navier-Stokes solution for a laminar columnar vortex having an initially uniform vorticity 
distribution.   This particular solution is an independently derived, mathematically distinct, alternate 
solution to the Ref. 8 work, also derived for an initially uniform vorticity distribution.   Each version, Ref. 
4-5 versus Ref. 8, has its own relative strengths and weaknesses, but, for most part, the Ref. 4-5 solution is 
of greater generality.  In both cases a laminar line vortex model is described whereby the unsteady 
solutions go from a Rankine-like tangential velocity profile to one that is nearly identical to the Lamb-
Oseen vortex, see Fig. 1.  There are several different laminar vortex models detailed in the literature.  This 
particular vortex model was chosen to represent the laminar basic flow state for this paper’s analysis 
because of its quasi-separable analytic nature and because it was also an unsteady solution (refer to Eq. 

T 



88b, Appendix B).  An alternate family of vortices, as detailed in Ref. 6, could also potentially be employed 
as a laminar basic flow state.   
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Fig. 1 – Laminar/Basic Flow Solution for a Line Vortex with Initially Uniform Vorticity 

 
 
Unlike the classic turbulent flow approach taken with Navier-Stokes Reynolds-averaging, e.g. Ref. 11, 

the velocity will be expressed as follows in terms of both the laminar unsteady flow solution (defined in 
terms of the 

! 

vr , 

! 

v" , and 

! 

vz  velocity components) and turbulent fluctuation velocity components by 

! 

ˆ v r , 

! 

ˆ v " , and 

! 

ˆ v z  (this alternate approach being more inspired, instead, by the classic treatment for fluid flow 
stability theory, e.g. Refs. 11-12, for disturbance velocities).  This reflects the interpretation of the turbulent 
flow problem as a fluctuation between two flow states, one flow state being the earlier derived unsteady 
laminar flow solution.    

 

! 

V = vr + ˆ v r v" + ˆ v " vz + ˆ v z[ ]  
 (1) 
 
In turn, that also implies (principally as a consequence of the length-scale factor methodology relating 

the axial and radial vorticity to the axial and radial velocity components) that the vorticity can be similarly 
expressed in terms of both a laminar, but unsteady, basic flow solution and turbulent fluctuation vorticity 
components.    

! 

" = "r + ˆ " r "# + ˆ " # "z + ˆ " z[ ]  
 (2) 

 
The LSF methodology, in general, seeks to derive approximate, but fully three-dimensional and 

unsteady, solutions to the viscous Helmholtz vorticity transport equations by employing length scale factors 
to establish simple linear relationships between either two or three velocity/vorticity pairs.  These length 
scale factor relationships can be applied to either to the basic flow or to disturbance velocities, in the case 
of nonlinear stability analysis, or, for turbulent flow analysis, to the turbulent fluctuation velocity 
components.  By further making the large-Reynolds-number assumption for the flow problem, approximate 
analytical solutions can be derived.  For the analysis outlined in this paper, it is unnecessary to apply the 
LSF methodology to the laminar basic flow.   Instead, the length scale factors are applied only to the 
turbulent fluctuation velocities, such that    

  

! 

ˆ v z = "l ˆ # z  

  

! 

ˆ v r = "l ˆ # r  

  

! 

ˆ v " = #l ˆ $ "  
 (3a-c) 

 



This work is very analogous to earlier work, Ref. 7, discussing vortex filament nonlinear stability subject to 
various active flow control strategies seeking to disrupt the basic flow state of the vortex.   
 

Given the above LSF relationships, an analysis is provided by which “disturbance velocity” -type 
equations (drawing upon stability analysis heritage) are derived, see Eq. 4a-c. Instead of using these 
disturbance-type equations to assess the stability of the basic flow, the equations are employed to directly 
solve for analytic expressions for the columnar/line vortex turbulent fluctuation velocities.   

 

  

! 

l
• "#z

•

"r
•

ˆ v r
•
$

v%
•

r
•

" ˆ v z
•

"%
- l

•#z
• " ˆ v z

•

"z
•

= 0  

 

  

! 

v"
•

r
•

# ˆ v r
•

#"
+ l

•$z
• # ˆ v r

•

#z
•

= 0 

 

  

! 

v"
•

r
•

# ˆ v "
•

#"
$ ˆ v r

• #v"
•

#r
•

+ l
•%z

• # ˆ v "
•

#z
•

= 0  

 (4a-c) 
 
The complete unsteady solution is obtained from the combination of two solutions – one for the mean 

flow state (both laminar and turbulent) and the other for the “turbulent fluctuation” flow.  These solutions 
are detailed in Appendices A-B.  In Appendix C, an analysis and discussion is presented as to the level of 
approximation inherent in applying the LSF linear vorticity and velocity relationships as given Eq. 3a-c.   

 
 

III. Predicted Turbulent Vortex Phenomenology 
 
The derived turbulent model is a fully unsteady solution.  The turbulent fluctuation solutions are derived 

first.  The mean flow solution is subsequently derived.  Finally, a solution for effective vortex “accelerated 
aging” is derived and its implications on both the mean and the fluctuation flow are considered.  However, 
for the solution to be complete, it must employ a prescribed initial laminar vortex flow model.  Several 
laminar vortex flow models could be used to prescribe the basic flow state of the analysis.  For the 
representative results presented in this paper, a “uniform-core” laminar vortex model is employed; refer to 
Refs. 4-5 and Appendix B for details.  The instantaneous turbulent flow is three-dimensional in nature.   
For example, helical isosurface structures wrapped along the turbulent vortex axis are predicted, though not 
graphically presented, in this paper.  The analytical solution, though derived primarily within a 
deterministic framework, has incorporated into it an essential stochastic character.   For example, it is 
shown that only through elements of such stochastic functionality is a net nonzero mean flow predicted for 
the turbulent vortex tangential velocity profile.  Perhaps one of the most intriguing aspects of the derived 
model is that it captures the vortex transition from laminar to turbulent flow states.  Further, it also predicts 
a “relaminarization” process for turbulent vortices in the late stages of their evolution.  The term 
relaminarization is used in this paper solely in the context that the vortex turbulent kinetic energy (TKE) 
reaches some maximum and then decreases with time.   

 
Both the transition from laminar to turbulent flow states, and the subsequent vortex relaminarization 

after being fully turbulent, can be clearly seen in Fig. 2.  Figure 2 shows the trend with nondimensional 
time of the peak (at or near the vortex centerline) TKE of the vortex (refer to Eq. 62g, Appendix A).  Such 
a relaminarization process is implicit in the vortex turbulence measurements of several different 
experimental studies reported in the literature – including Refs. 16-17.   In Fig. 2 a rapid transition from 
laminar to turbulent flow begins at very small values of nondimensional time.  The TKE reaches a 
maximum with fully-developed turbulence and then subsequently begins to relaminarize at a comparatively 
slow pace.   
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Fig. 2 – Transition from Laminar to Turbulent Flow with Subsequent Relaminarization 

 
 
Figures 3-8 describe the general mean flow characteristics of the modeled turbulent line vortex.  Figure 

1 illustrated the time dependence of the laminar vortex tangential velocity profile.   Figure 3 presents a 
comparable set of mean flow tangential velocity profiles for a turbulent line vortex (refer to Eqs. 10a and 
60, Appendix A).  Note that the vortex can only be considered fully turbulent for the two oldest vortex 
profiles shown.  The profiles corresponding to the two smallest values of nondimensional time are in a state 
of transitional flow.  The analysis includes a "cutoff" constant to show where/how the profile should jump 
from a !

r1  behavior, where 1<! , reflecting the influence of turbulence on the mean flow, to a 

! 

1 r  profile 
to reflect the correct far-field potential flow like behavior.  The jump from a turbulent !

r1  profile to a 
potential far-field 

! 

1 r  profile can be clearly seen in the profiles corresponding to the smallest values of 
nondimensional time.  At these small values in time the profiles still represent transitional flow and 
therefore the asymptotic approach to the potential 

! 

1 r  profile is accomplished further inward to the core 
than it is for the later vortex ages, where the vortices reflect full-developed turbulence.   
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Fig. 3 – Tangential Velocity Mean Flow Profile 

 
 
A general comparison of the non-normalized laminar versus turbulent mean flow tangential velocity 

profiles is shown in Fig. 4 for an equivalent value of nondimensional time.  The turbulent vortex has been 
subjected to accelerated aging, thereby leading to great effective diffusion of the vortex than is the case for 
the laminar vortex.  This accelerated aging of the turbulent vortex results in a more rapid decrease in the 



peak tangential velocities with time as well as increased rate of growth of the vortex core radius as 
compared to laminar vortices.   This is a well-known mean flow behavior of turbulent vortices, Refs. 16-19 
and 25-26.  The general form of the two profiles is also different, though perhaps subtly so in the particular 
velocity profiles presented.  The turbulent vortex is more rounded about, and after, the vortex peak than the 
laminar vortex.   In this regards, the predicted turbulent tangential velocity profile is consistent with 
experimental observations and other analytical models and computational studies.  However, a comparison 
between normalized laminar and turbulent tangential velocity profiles, wherein the velocities are divided by 
the peak velocity and the radial coordinate divided by the core radius, reveals that turbulent mean flow 
tangential velocity profile needs to be shifted further outward from the vortex core.  This will be discussed 
further shortly.   
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Fig. 4 – Tangential Velocity Mean Flow Profiles 

 
 
Turbulent vortices have a higher normalized tangential velocity mean flow profile for the outer region, 

beyond the vortex, as compared to any laminar vortex, particularly for that of a Lamb-Oseen vortex profile. 
This can be clearly seen in Fig. 5.   
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Fig. 5 – Normalized Comparison between Lamb-Oseen Vortex and Turbulent Vortex Model 

 
 



In addition to the mean flow tangential velocity profiles, Figs. 6-7 illustrate the time dependence of the 
vortex core radii and the peak tangential velocity for the turbulent vortex.   As noted earlier, they both 
reveal significant and expected differences in their trends with respect to time as compared to fully laminar 
line vortices.  The relative magnitude of those predicted differences is a function of certain key modeling 
parameters and constants, which are only partially defined in the analysis, as discussed in detail in 
Appendix A.  Note that relaminarization has already begun narrowing the relative differences between the 
Figs. 6 and 7 laminar and turbulent vortex core size and peak tangential velocity trends at large values of 
nondimensional time.    
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Fig. 6 – Laminar versus Turbulent Vortex Core Radii Time Dependence 
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Fig. 7 – Peak Tangential Velocity Time Dependence 

 
 
A representative vortex circulation distribution is shown in Fig. 8.  The difference between the laminar 

and turbulent circulation profiles is not because of some difference in the analytic character in the two 
distributions, but is instead merely a consequence of the accelerated vortex aging for turbulent vortices 
(refer to Eq. 72, Appendix A).  The circulation profile is still very much laminar-like in nature.  For 
example, there is no prediction of a “circulation overshoot” as first predicted/hypothesized in Ref. 24 and 
discussed in other works.   

 



0 2 4 6 8
0

1

2

3

4

Turbulent

Laminar

Nondimensional Radial Coordinate

N
o
n
d
im

e
n
s
io

n
a
l 

C
ir

c
u
la

ti
o
n

 
Fig. 8 – Laminar vs. Turbulent Vortex Circulation Distribution 

 
 
Perhaps the greatest utility, and most novel nature, of the current analysis is in its treatment of vortex 

turbulence prediction.  A direct analytical assault to derive solutions for the turbulent fluctuations 
themselves has been attempted.  The governing equations for this problem are summarized in Eqs. 3a-c.  
These turbulent fluctuation governing equations are analogous to disturbance velocity equations used in 
classic flow stability analyses.  The mean flow solution is, in some regards, merely a consequence of the 
derived turbulent fluctuation solutions.   General trends in vortex turbulence, Reynolds stress, and TKE are 
predicted in Figs. 9-12 (Eq. 62a-h, Appendix A).  These trends are qualitatively in good agreement with the 
experimental vortex turbulence measurements, e.g. Refs. 16-19 and 25-26.   The radial and tangential 
turbulence profiles reach a maximum at or near the vortex center.  Alternatively, the axial turbulence is at a 
minimum at the vortex center.  The predicted axial turbulence, though, is significantly lower in overall 
magnitude, as compared in relation to the radial and tangential turbulence, than is indicated in most 
experimental data.  This is undoubtedly a consequence of most experimental measurements being made for 
trailed vortices versus a line vortex.  Trailed vortices have a significant amount of nonzero mean axial flow 
inside the vortex core.  Reference 18 attempted to simulate a line vortex using steady axial flow injection 
into a trailed vortex core; such an experimental simulation of a line vortex appeared to reduce the 
magnitude of the axial turbulence as compared to a trailed vortex without injection.  In this regards, Ref. 18 
axial turbulence results were somewhat more consistent with the predictions of this paper.    
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Fig. 9 – Radial and Tangential Turbulence Radial Distributions  



 
 
Note the small anisotropy of the radial versus tangential velocity turbulence profiles.   This anisotropy is 
intrinsically linked to the fluctuation skew, or offset, essential for establishing a nonzero net mean flow for 
the tangential velocity profile, as compared to the radial and axial mean flow distributions, which average 
out to zero net flow.  The recent experimental work of Ref. 17 highlighted the importance of being able to 
model this anisotropy between the two turbulence components.  The “dimples” seen at 0!

•
r  for the radial 

and tangential velocity turbulence profiles may have some physicality.  There is some experimental 
evidence, again as seen in Ref. 17, for such a small drop-off in turbulence at the vortex center for the radial 
and tangential turbulence profiles, but it is a small, secondary effect at best.  Alternatively, such drop-offs 
in the radial and tangential turbulence profiles could simply be an artifact of the numerical difficulty of 
estimating asymptotic limits of the two turbulence profiles so close to the vortex center.    
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Fig. 10 – Axial Turbulence Radial Distribution (for a Line Vortex)  

 
Reynolds shear stress predictions are extremely difficult to measure as well as predict.  Figure 11 

illustrates some general radial distribution trends for this paper’s predicted Reynolds shear stresses.   
Higher-mode contributions to the predicted Reynolds shear stress profiles can be discerned in Fig. 11, i.e. 
the slight “bumps” around 

! 

r
•
" 1, but for the most part these profiles are dominated by the lower modes.   

 

0 2 4 6 8 10 12
0.01!

0

0.01

0.02
vrvz

vrvtheta

vzvtheta

Nondimensional Radial Coordinate

R
ey

n
o
ld

s 
S

h
ea

r 
S

tr
es

se
s

 
Fig. 11 – Predicted Reynolds Shear Stress Radial Distributions 

 
 
The relative contribution of higher-modes to the vortex Reynolds shear stresses is as yet undecided.  

The experimental work of Ref. 17 would suggest that the lower modes, like the predictions provided in this 



paper, dominate the Reynolds stress distributions.  However, though the accuracy of Ref. 18 results is 
somewhat questionable, the experimental measurements of Ref. 18 seem to show more of a contribution for 
the higher-modes.   
 

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

Nondimensional Radial Coordinate

T
u

rb
u

le
n

t 
K

in
et

ic
 E

n
er

g
y

, 
T

K
E

 
Fig. 12 – Turbulent Kinetic Energy Radial Distribution 

 
 

These initial results are only qualitative, the vortex model currently only being phenomenological in 
nature, and not really predictive in a quantitative sense.§     More work needs to be performed to ideally 
extend the analysis and to rigorously derive the constants/parameters used in the analysis.   

 
 
 

IV. Limitations of Analysis and Future Opportunities 
 
The derived analysis does not directly address the circumstances in which vortex formation from a 

wing- or blade-tip occurs as an initially turbulent flow process.   Such a circumstance might be tackled by 
considering only that portion of the vortex evolution solution wherein the vortex is fully turbulent.   Finally, 
also unaddressed by this analysis is the influence of external strain fields on vortex evolution.  Such 
external strain fields are an important consideration for vortex evolution in rotary-wing wakes.  It is, 
however, straightforward to apply the turbulent flow analysis outlined in Appendix A to other 
laminar/basic-flow vortex models besides the uniform-core model summarized in Appendix B.  For 
example, the same analysis can be applied to the parabolic-core model detailed in Refs. 4-5 or the family of 
unsteady laminar vortices detailed in Ref. 6.    

 
The normalized energy spectrum for the turbulent vortex model, as a function of mode number, is 

presented in Fig. 13.  The total energy for each mode has been estimated by integrating across the vortex, 
from 

! 

0 " r
•

<#
$ .   A considerable amount of research has been directed at examining the energy spectrum 

of various different turbulent flows, with the expectation, for the most part, that the energy spectrum in the 
inertial range will approach some sort of “universal” scaling.    

                                     
§ The key parameter and constant values used in the above figures are as follows (unless otherwise noted): 10=! , 5.0=! , 

! 

" = 10
#11 , 

! 

t
•

= 1, and

! 

teff
•

= 1.93 , among others.  Their definition, interdependencies, and general constraints are detailed in the 
appendices.   
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Fig. 13 – Predicted Energy Spectrum  

 
 

It can be seen from Fig. 13 that the energy spectrum for the current predictions presented shows a steeper 
fall-off of energy with mode number than the classic Kolmogorov -5/3 law for isotropic turbulence in the 
inertial range, Ref. 15.   This partially explains why very little higher-mode contribution is seen in the 
turbulence and Reynolds shear stress predictions of Figs. 9-12.   An energy spectrum more reflective of the 
Kolmogorov spectrum would exhibit more in the way of higher-mode contributions than currently being 
demonstrated in the predictions.  This discrepancy in the energy spectrum is only of minor consequence.  It 
would be straightforward, if need be, to tailor the higher-mode constants employed in the analysis to match 
the Kolmogorov -5/3 power law for the turbulence energy spectrum.   

 
Finally, the derived analysis suggests a possible explanation for the dichotomy of why certain laminar 

flows, when subjected to flow stability analysis, analytically appear stable to two-dimensional and 
sometimes three-dimensional excitation (this includes the work of Ref. 7) even though clearly, through 
experimental demonstrations, the flows can indeed transition into turbulent states.  Examples of this 
dichotomy include the Lamb-Oseen vortex, which has been subjected to numerous stability analyses, e.g. 
Ref. 28, that have consistently failed to show amplified instabilities that could lead to turbulence.  The 
answer, as suggested by the analysis provided in this paper, lies in the fact that the flow solution can be 
considered “superposed” in nature.   In this context, the laminar solution terms can be nominally 
independent of, but additive to, the turbulent terms in some complete solution, i.e. the two solutions are 
superposed.  Therefore the laminar solution may be stable, when subjected to flow stability analysis, but the 
superposed turbulent analytical contribution would obviously be unstable in a general sense.   Indeed, it 
would only be the inherent transitional nature of some previously-not-derived hidden, or meta, flow state of 
a turbulent fluctuation solution that yields fully turbulent flow.  One such superposed laminar/turbulent 
flow solution has been derived for line vortices in this paper.   

 
 
 

Concluding Remarks 
 
A preliminary analytical treatment is developed that provides new insights into turbulent vortex 

evolution.  It represents a significant departure from previous work in the literature and provides a 
conjectural and analytical framework that addresses still little understood aspects of turbulent vortex 
phenomenology.  The derived turbulent vortex model is a hybrid stochastic/deterministic solution.  For 
example, a novel result of the work is the modeling of vortex transition from laminar to turbulent flow 
states.  Additionally, another novel aspect of the work is the modeling of a relaminarization process for 
turbulent vortices.   

 

Coefficient semi-arbitrary “power law” 
relationship would need adjustment to 
match Kolmogorov result 



Considerable work remains to advance this vortex model into a fully predictive tool.  In particular, a 
rigorous methodology to define several key parameters/constants in the model still needs to be developed.  
Many of these parameters/constants are currently defined only in an informal and/or conjectural manner.  
Nonetheless, the analysis already shows considerable promise in that it embodies a host of rich yet-to-be-
fully-explored mathematical and physical concepts and insights for vortical flow modeling.   

 
Though the problem considered, that of turbulent line vortices only, might seem overly simplistic, it is 

anticipated that the results of this analysis will have implications for the analysis of more general/complex 
vortical flow phenomena.   
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Appendix A – Analytical Treatment of Turbulent Flow 
 
Consider the Helmholtz vorticity transport equation  
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 (5a-d) 
 
From previous work, Refs. 4-5, exact unsteady laminar flow solutions for a family of columnar vortices 

has been derived.  This solution is summarized in Appendix B.  This laminar flow solution is the basic flow 
state for the following detailed turbulent flow solution.  For columnar/line vortices the mean flow state, by 
definition, requires only the axial vorticity and tangential velocities to be nonzero and that, 
correspondingly, 0==== !"" zrr vv .    

 
Nondimensionalizing Eq. 5a-d yields the following**       
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** The 

! 

" –symmetry assumption only needs to be made (later) for this particular flow problem for the basic/mean flow and not the 
turbulent fluctuation velocities.   
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 (6a-c) 
 
Making, as noted in Refs. 4-5, the large Reynolds number assumption, Eq. 6a-c reduces to  
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Unlike the classic turbulent flow approach taken with Navier-Stokes Reynolds-averaging, e.g. Ref. 11, 

the velocity will be expressed as follows in terms of both a mean flow solution (defined in terms of the 

! 

vr , 

! 

v" , and 

! 

vz  velocity components) and “turbulent fluctuation” velocity components by 

! 

ˆ v r , 

! 

ˆ v " , and 

! 

ˆ v z  
(this alternate approach being more inspired, instead, by the classic treatment for fluid flow stability theory, 
e.g. Refs. 11-12, for “disturbance” velocities).  At 

! 

t = 0 the mean flow state is equivalent to the unsteady 
laminar flow solution summarized in Appendix B.  The flow velocities can, therefore, be expressed as  

 

! 

V = vr + ˆ v r v" + ˆ v " vz + ˆ v z[ ]  (8) 
 
In turn, this also implies (principally as a consequence of the length-scale factor methodology relating 

the axial and radial vorticity to the axial and radial velocity components) that the vorticity can be similarly 
expressed in terms of both a laminar, but unsteady, basic flow solution and turbulent fluctuation vorticity 
components.    
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Further, the mean flow state will be decomposed into laminar and turbulent components by means of 

the following expression  

TL
vvv !!! "+=  



! 
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 (10a-b) 
 
The two flow components/solutions would be considered “superposed.”  Derivation of the laminar (basic) 
mean flow component is summarized in Appendix B.  The turbulent mean flow component will be derived 
after, and indeed from, the turbulent fluctuation analytical expressions, at the close of this appendix.   

 
Substitution of the above turbulent fluctuation expressions for the vorticity into the Helmholtz equations 

gives  
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Apply the 

! 

" –symmetry assumption to the mean flow portion of the equation and, further, assuming that 

either 
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= 0  or, as a minimum, 
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• .  In 

other words, as a minimum the identified mean flow components are significantly smaller in magnitude 
than the absolute- or RMS-values (root-mean-square values) of the turbulent fluctuations of those same 
vorticity/velocity components.  Accordingly, the mean flow components, 

! 

vr
• , 

! 

vz
• , 

! 

"r
•, and 

! 

"#
• , are 

assumed negligible in Eq. 11a-c.  The turbulent fluctuations are, however, fully three-dimensional and of 
non-negligible magnitude.    
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Applying length scale factor assumptions to the turbulent fluctuation velocities (Refs. 4-7) yields  
 

  

! 

ˆ v z " #l ˆ $ z  

  

! 

ˆ v r " #l ˆ $ r  

  

! 

ˆ v " # $l ˆ % "  
 (13a-c) 

Note the following nondimensionalization of the length scale factor: 
  

! 

l
•

= l rc0 .   
 

Unlike the previous work of Refs. 4-5, the length scale factor, l , is applied throughout the whole flow 
field and not discretely applied to partitioned regions of flow separated by wave-front boundaries.††  
Accordingly,  

  

! 

l = "rc0  And   
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l
•

= "1 
 (14a-b) 

Making the above substitutions yields  
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†† This may be a matter of subtle interpretation, in this particular case.  Later in this paper, in deriving a function for the radial 
distribution of the radial and tangential turbulence, i.e. 

! 

g r,t
•( ) , a “cutoff” parameter 

! 

"  is introduced, with an associated “smoothing” 

function, for the turbulence centered at a discrete radial boundary.  Within this boundary the flow is turbulent; outside this boundary 
the turbulence rapidly drops off.  This boundary, associated with the cutoff parameter 

! 

" , is a function of time and, therefore, could in 
fact be interpreted as a propagating wave-front boundary similar to those employed/identified in the above noted earlier work, Refs. 4-
5.   



The mean flow vorticity and velocities will be determined later in the paper, but for the following 
discussion regarding derivation of the turbulent fluctuation solutions, the mean flow components are 
assumed already known.  Note, though, for small values of time, the mean flow values of •

z!  and 

! 

v"
•  are 

approximately equal to the values predicted by the unsteady laminar solution summarized in Appendix B.   
 
Equation 15b can be solved by the method of separation of variables for the radial turbulent fluctuation 

velocity.  Letting 
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The above is separable into two equations  
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The elemental solutions of the above two equations, 
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h0 "( ) =#eb"  and 
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are linear first order ordinary differential equations, and because the solution has to be periodic with respect 
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• , the complete solution of Eq. 15b must be represented by the superposition of elemental 

solution such that  
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derivative expressions relating complex exponential functions to trigonometric functions, specifically 
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"ix( ) 2 i , yields  

 

! 

ˆ v r
• " fm

•
r

•
, t

•( ) sin m # $ z
•

A( )% 
& 
' ( 

) 
*  (19) 

 
In general, therefore, the problem can be satisfied by an expression of the following form  
 

! 

ˆ v r
• = C1 + fm

*
r

•
, t

•( ) sin m " # z
•

A( ) +$m
*

r
•
, t

•( )% 
& 
' ( 

) 
* 

m=1

+#

,  

 
Where, again 

  

! 

A = l
•
r

•"z
•
v#

•  
 (20a-b) 
 

And 

! 

C1  is a constant with respect to 

! 

z
•  and 

! 

" , but otherwise could be a function with respect to 

! 

r
•  and 

! 

t
• .  The constant 

! 

C1  could represent an external and/or background turbulence field in which the vortex is 



embedded.  For the purposes of this analysis it can be assumed with a negligible loss of generality that 

! 

C1 = 0 .   Requiring that 

! 

fm
*
r

•
, t

•( )  be quasi-separable in the sense that  

 

! 

fm
*
r

•
, t

•( ) = g r, t( ) fm t
•( )  

Where  

! 

"

"t•
g r

•
, t

•( ) <<
"

"t•
fm t

•( )  

 (21a-b) 
The solution for 

! 

ˆ v r
•  can then be recast as  

 

! 

ˆ v r
• = g r

•
, t

•( ) fm t
•( ) sin m " # z

•
A( ) +$m t

•( )% 
& 
' ( 

) 
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m=1

+#

,
- 

. 
/ 

0 / 

1 

2 
/ 

3 / 
 

 (22) 
 
Equation 22 implies that the instantaneous fluctuating radial velocity distribution will take on a helical 

distribution.  The exact complexity of these helical structures will be dependent upon the order of modes, 

! 

m , being considered in the analysis, as well as the exact form/functionality of the amplitude and phase 
functions, 

! 

fm t
•( )  and 

! 

"m t
•( ) .  Note that at least as far as continuity and Eq. 15b are concerned, both 

! 

fm t
•( )  and 

! 

"m t
•( )  can have both deterministic and stochastic contributions.  This will be discussed in 

greater detail later in the paper. ‡‡     
 
Next, Eq. 15c will be used to solve for the tangential velocity component, 

! 

ˆ v "
• .  Using the previous 

definition 
  

! 

A = l
•
r

•"z
•
v#

• , Eq. 15c becomes  
 

! 

" ˆ v #
•

"#
+ A

" ˆ v #
•

"z
•

+ B ˆ v r
•

= 0  

Where  

! 

B = "
r

•

v#
•

$v#
•

$r•
 

 (23a-b) 
 
Assuming a separable solution for 

! 

ˆ v "
•  of the form 

! 

ˆ v "
• = h1 "( )#1 z

•( ) , then Eq. 23a becomes  

 

                                     
‡‡ Verifying the 

! 

ˆ v 
r

•  solution, Eq. 22 is substituted back into Eq. 15b.    
 

  

! 

v"
•

r
•

# ˆ v r
•

#"
+ l

•$ z
• # ˆ v r

•

#z
•

= 0

%

# ˆ v r
•

#"
+ A

# ˆ v r
•

#z
•

= 0

%

g r
•
,t

•( ) mfm t
•( ) cos m " &

z
•

A

' 

( 
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* 

+ 
, , +-m t

•( )
' 

( 

) 
) 

* 

+ 

, 
, 

m=1

.&

/
0 
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2 

3 2 

4 

5 
2 

6 2 
+ &1( )Ag r

•
,t

•( )
m

A
fm t

•( ) cos m " &
z

•

A

' 

( 
) ) 

* 

+ 
, , +-m t

•( )
' 

( 

) 
) 

* 

+ 

, 
, 

m=1

.&

/
0 

1 
2 

3 2 

4 

5 
2 

6 2 
= 0

%

0 = 0

 



! 

1

h1

"h1

"#
+
A

$1

"$1

"z•
+ B

h0$ 0

h1$1
= 0  

 (24) 
Equation 24 can be partially separated as follows  
 

! 

A

"1

#"1

#z•
= $%  

 

! 

1

h1

"h1
"#

+ B
h0$ 0
h1$1

= %  

 (25a-b) 
 

Solving Eq. 25a for 

! 

"1 z
•( )  gives 

! 

"1 z
•( )# e$%z

•
A .   Given this result, if it is assumed that 

! 

" = b , then 

! 

"1 z
•( ) = " 0 z

•( ) .   The consequence of this second result is that Eq. 25a-b is now fully separable and Eq. 

25b becomes  
 

! 

"h1
"#

$ %h1 + Bh0 = 0  (26) 

 
This first-order ordinary differential equation can be straightforwardly solved for.  The result is  
 

! 

h1 = e
"d#$ % & B h0 #( )e

& "d#$
d#$

' 
( 
) 

* 
+ 
, 

= eb# % & B h0 #( )e&b# d#${ }

= eb# % & B -d#${ } = % &-B#( )eb#
 

 (27) 
 
The complete solution for 

! 

ˆ v "
•  has to be quasi-periodic and, therefore, given the linearity of the 

equations involved, superposition can be employed.  Further, using complex exponential functions gives  
 

! 

ˆ v "
•
# $1 %&1B"( )e

b1 " %z
•

A( )
+ $ 2 %&2B"( )e

b2 " %z
•

A( )  
 (28) 

 
Where, as before, 

! 

"1 = #"2 = fm
*
r

•
, t

•( ) 2i , 

! 

b1 = mi , and 

! 

b2 = "mi .   New arbitrary constants, with 

respect to 

! 

"  and 

! 

z
• , are introduced where 

! 

"1 = #" 2 = gm
*
r

•
, t

•( ) 2i .    

 
The general solution for 

! 

ˆ v "
•  is consequently given by the expression  

 

! 

ˆ v "
• = C2 + gm

*
r

•
, t

•( ) # fm
*

r
•
, t

•( )B"
$ 
% 
& ' 

( 
) sin m " #z

•
A( ) +*m

*
r

•
, t

•( )$ 
% 
& ' 

( 
) 

m=1

+#

,  

 (29) 
 

Where 

! 

C2  is again a constant with respect to 

! 

z
•  and 

! 

" , but otherwise is a function with respect to 

! 

r
•  and 

! 

t
• .  Again, with negligible loss of generality, it is assumed that 

! 

C2 = 0 .  Equation 29 is only valid for the 

range 

! 

z
•
A "#m

*
r

•
, t

•( ) m $% $ 2& + z•
A "#m

*
r

•
, t

•( ) m  and, further, limited to 

! 

"2# $ z•
A $ 2# , 

where outside this axial coordinate range successive “mirroring” of the flow can be employed.  Note 



though that the “mirror” plane-of-symmetry axial locations, in terms of 

! 

z
• , are a function of the radial 

coordinate, 

! 

r
• , of the points being evaluated.  Such required mirroring of the turbulent helical flow 

structures begins at a much larger axial location for points near the vortex centerline than it does for the 
outer regions of the vortex because 

! 

A" 0 as 

! 

r
•

>> 0.   
 
The solution for 

! 

ˆ v "
•  is assumed to be quasi-separable in the context of Eq. 21a-b.  Next, the higher-

mode time-dependent function, 

! 

fm
*
r

•
, t

•( ) , is decomposed/separated into two simpler functions 

! 

" m( )  and 

! 

f m, t
•( ) , such that 

! 

fm t
•( ) = " m( ) f m, t•( )  where as previously prescribed 

! 

fm
*
r

•
, t

•( ) = g r•
, t

•( ) fm t
•( ) .  In 

turn, making the assumption that 

! 

gm
*
r

•
, t

•( ) = g r•
, t

•( )" m,r
•
, t

•( )  where 

! 

"m r
•
, t

•( ) # $ m( ) % m,r•
, t

•( ) + f m, t
•( )& 

' 
( ) 

* 
+ , 

! 

" m,r•
, t

•( ) #$ %max fm t
•( )& 

' 
( ) 

* 
+ % 1+ A( ) , and !  is an arbitrary 

multiplier constant, i.e. the “offset” or “skew” of the tangential turbulent fluctuation.  Note that 

! 

max fm t
•( )" 

# 
$ % 

& 
' ( max f 1, t

•( )" 
# 
$ % 

& 
' .  Without this offset or skew there can be no net mean flow resulting from 

the tangential velocity turbulent fluctuation.  It imposes an assumed radial distribution, the 

! 

1+ A( ) term in 

the 

! 

" m,r•
, t

•( )  function, to the turbulent fluctuation skew. The assumed skew radial distribution has five 

important characteristics: (1) 

! 

" m,r•
, t

•( )# 1+ A( ) $ 0  as 

! 

r
•
" 0, (2) 

! 

"# m,r•
, t

•( ) "r•
$" 1+ A( ) "r• = "A "r•

% 0  as 

! 

r
•
" 0, (3) 

! 

" m,r•
, t

•( )# 1+ A( ) $ 1 as 

! 

r
•
"# , (4) 

! 

"# m,r•
, t

•( ) "r•
$" 1+ A( ) "r• = "A "r•

% 0  as 

! 

r
•
"# , and (5) the radial expanse to which 

! 

A  has non-

zero values expands with time, in parallel with the vortex core radius growth.  It is important to note that 
the 

! 

1+ A( )  term is of relatively low order; follow-on analyses refining the functionality of 

! 

" m,r•
, t

•( )  

might require higher-order terms.  Proceeding, nonetheless, the above assumed functional relationships 
yields the expression  

 

! 

ˆ v "
• = g r

•
, t

•( ) #m r
•
, t

•( ) $ fm t
•( )B"% 

& 
' ( 

) 
* sin m " $z

•
A( ) ++m t

•( )% 
& 
' ( 

) 
* 

m=1

,$

-
. 

/ 
0 

1 0 

2 

3 
0 

4 0 
 

 (30) 
 
The above functional decomposition will shortly be seen as being critical to addressing a number of 
anticipated analysis issues.  The introduction of the quantity 

! 

" m,r•
, t

•( ) + f m, t
•( )  in the 

! 

"m r
•
, t

•( )  

function dictates that the tangential velocity fluctuations are skewed positive in sign by the offset quantity 

! 

" m,r•
, t

•( ) .§§  The radial and axial turbulent fluctuation solutions do not have such offsets and, therefore, 

                                     
§§ By way of further exposition, if 

! 

f m,t
•( )  were described by a single undamped sinusoidal mode, say for example, 

! 

f m,t
•( ) = a " cos mt•( ) , then 

! 

" m,r
•
,t

•( ) = a # 1+ A( )  for a fully skewed positive fluctuation, i.e. 

! 

" = 1.  This skewing needs to be 

implemented so that, after time-averaging, the tangential fluctuation solution will yield a net nonzero turbulent mean flow distribution 
for the vortex.  Using the previous simple example, without this skewing or offset, 

! 

" m,r
•
,t

•( ) = 0 , therefore, 

! 

1 T( ) f m,"( )d"
t

t+T

# = 1 T( ) a $ cos m"( )d"
t

t+T

# % 0 .  Alternatively, with skewing, 

! 

" m,r
•
,t

•( ) = a # 1+ A( )  and, consequently, 

! 

1 T( ) " m,r•
,t

•( ) + f m,#( )( )d#t

t+T

$ = a T( ) 1+ A + cos m#( )( )d#
t

t+T

$ , or 

! 

1 T( ) " m,r•
,t

•( ) + f m,#( )( )d#t

t+T

$ % a & 1+ A( ) , and 

therefore a net mean flow radial distribution is introduced.   
 
 



time-averaging of these solutions yields zero mean turbulent flow for these velocity components.  This 
reinforces the proposed interpretation (Ref. 7) of transitional and fully-developed turbulent flow as being 
intermediate, and transitory, states between two extremes – the laminar basic flow state and a never-fully-
realized meta-state.   The role of the 

! 

" m,r•
, t

•( )  offset will be clearly seen at the close of this appendix, 

during the derivation of the tangential velocity turbulent mean flow distribution.   Note that the function 

! 

"m r
•
, t

•( )  is completely defined when 

! 

g r
•
, t

•( )  and 

! 

fm t
•( )  are defined.  Finally, in the above solution for 

! 

ˆ v "
• , the requirement that 

! 

ˆ v "
•

" =0

= ˆ v "
•

" =2#
 is automatically satisfied by employing the sine terms and 

limiting the range of applicability of Eq. 30 to

! 

z
•
A "#m

*
r

•
, t

•( ) m $% $ 2& + z•
A "#m

*
r

•
, t

•( ) m  and, 

again, limited to 

! 

"2# $ z•
A $ 2# , as well.    

 
Next, Eq. 15a will be considered for solving for 

! 

ˆ v z
• .   The resultant form of Eq. 15a, employing the 

previously defined parameter 

! 

A , is  
 

0ˆ
ˆˆ

=++
•

•

••

r
zz

vC

z

v
A

v

!

!

!"

!  

Where  

  

! 

C = "
l

•
r

•

v#
•

$%z
•

$r•
 

 (31a-b) 
 
Effectively the Eq. 31a first-order partial differential equation has the same functional form as Eq. 23a 

and consequently has the same general solution.***   Therefore, the general solution for 

! 

ˆ v z
•  is given by the 

expression  
 

! 

ˆ v z
• = C3 + hm

*
r

•
, t

•( ) " fm
*

r
•
, t

•( )C#$ 
% 
& ' 

( 
) sin m # "z

•
A( ) +*m

*
r

•
, t

•( )$ 
% 
& ' 

( 
) 

m=1

+"

,  

 (32) 
 

                                     
*** Verifying the 

! 

ˆ v "
•  solution, Eq. 30 is substituted back into Eq. 15c.   
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" ˆ v #
•

"#
+ A

" ˆ v #
•

"z
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+ B ˆ v r
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$
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(
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- 
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- 
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1

A
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/ + 
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Note that the constant 

! 

C3 is assumed equal to zero without any significant loss of generality.  And, 
correspondingly a quasi-separable version of the solution for 

! 

ˆ v z
•  can be defined by making the assumption 

that 

! 

hm
*
r

•
, t

•( ) = h r•
, t

•( ) fm t
•( )  and 

! 

fm
*
r

•
, t

•( ) = g r•
, t

•( ) fm t
•( ) , but, further, unlike previously, in this 

case 

! 

" #$  and, specifically 

! 

h r
•
, t

•( ) " g r•
, t

•( ) .  This distinction -- for the radial functionality of 

! 

ˆ v r
•
" g r

•
, t

•( )  and 

! 

ˆ v "
•
# g r

•
, t

•( )  versus 

! 

ˆ v z
•  being a linear composite of the, as yet, undefined functions 

! 

g r
•
, t

•( )  and 

! 

h r
•
, t

•( )  -- is key to satisfying the continuity equation.  Therefore, given this,  

! 

ˆ v z
• = fm t

•( ) h r
•
, t

•( ) " g r
•
, t

•( )C#$ 
% 
& ' 

( 
) sin m # "z

•
A( ) +*m t

•( )$ 
% 
& ' 

( 
) 

m=1

+"

,  

 (33) 
 
The solutions for 

! 

ˆ v r
• , 

! 

ˆ v "
• , and 

! 

ˆ v z
•  are not yet complete as the functions defining both the radial 

coordinate and time dependence (amplitude and phase of each of the discrete modes) of these velocity 
components have not been derived.†††   The next step in completing the overall solution is to explicitly 
consider the continuity equation.  As the flow can no longer be considered axisymmetric, the full continuity 
equation is employed.    

 

! 

1

r

"

"r
rvr( ) +

1

r

"v#

"#
+
"vz

"z
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$

1

r
•

"

"r
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r
•

ˆ v r
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1

r
•

" ˆ v #
•

"#
+
" ˆ v z

•

"z
•

= 0  

 (34) 
 
Next, making the applicable substitutions for the turbulent fluctuation velocity components to the 

continuity equation, gives   
 

                                     
†††  Verifying the 

! 

ˆ v z
•  solution, Eq. 32 is substituted back into Eq. 15a.   
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 (35) 
 
Or, performing the required differentiation and simplifying, yields  
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 (36) 
 
The above equation, after collecting sinusoidal terms that are in common, and by necessity setting each 

collected subset of terms to zero, decomposes into four simpler equations/relationships‡‡‡   
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•
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•
, t

•( ) 
And  

                                     
‡‡‡  As an aside, it should be noted that the vorticity divergence relationship is automatically satisfied as continuity is satisfied when 
length scale factors are used to linearly relate the vorticity and velocity components, i.e.  
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! 

a "m " # m( )
m=1

$%

& ' 0  

While  

! 

a " # m( )
m=1

$%

& ' nonzero  constant  

 (37a-d) 
 
In the above, 

! 

a  is an arbitrary constant with respect to the mode number, 

! 

m .   Note that the first constraint, 
Eq. 37a, defines an absolute condition for preserving continuity.  The second constraint, Eq. 37b, is not 
absolute; instead it establishes an implied proportional relationship of 

! 

h r
•
, t

•( )  in terms of 

! 

g r
•
, t

•( ) .  The 

reason why the second constraint establishes only an implied proportional rather than an equivalence 
relationship between 

! 

h r
•
, t

•( )  and 

! 

g r
•
, t

•( )  is because the third and fourth constraints, Eq. 37c-d, must be 

absolutely satisfied and, in fact, take precedence over any relationship that might be defined between 

! 

h r
•
, t

•( )  and 

! 

g r
•
, t

•( ) .  In this regards, 

! 

h r
•
, t

•( )  might be considered a semi-arbitrary function.   It is this 

semi-arbitrariness that provides the analytic flexibility to introduce additional terms/functionality in order 
to satisfactorily deal with the otherwise singular behavior of 

! 

h r
•
, t

•( )  at 

! 

r
•

= 0 .  The third and fourth 

derived constraints, Eq. 37c-d, are quite unique.  For the higher modes (

! 

m " 1), continuity is not satisfied 
on a mode-by-mode basis but instead must be considered as an aggregate/cumulative result.  A possible 
alternate constraint,

! 

B = Cr
•
A , cannot be expected to be universally satisfied by any given vortex basic 

flow and so is discarded as a means of enforcing continuity.   The third and fourth higher-mode constraints 
have profound implications as to the functional dependence of 

! 

fm t
•( ), as it has the functional dependence 

of 

! 

fm t
•( )"# m( ) , with respect to the mode number.  Essentially, the third and four constraints, Eq. 37c-d, 

dictate convergence properties of any given series, or rather finite sum, comprised of 

! 

fm t
•( ) .  Note that as 

! 

"m r
•
, t

•( )# fm t
•( )#$ m( ) , these higher-mode continuity constraints equally apply to 

! 

"m r
•
, t

•( ) , as well.   

 
Recognizing that the turbulent fluctuation solution series expressions can be truncated at an arbitrary 

integer, M , chosen to represent the asymptotic approach to the limit 

! 

m"#
$ , then M  can be prescribed 

to be an even integer, ! "22 Mm #$  without any significant loss of generality.  Note that 

! 

x" #, or 

! 

floor x( ) , is the well-known “floor” function, which takes a real number and returns the closest lower-in-
value integer to the original real number; i.e., if 

! 

x  is a real number, and 

! 

j  is an integer, such that 

! 

j " x < j +1 then 

! 

x" # = j .  Therefore, for the turbulent fluctuation velocity solutions, each mode will be a 

member of a subset of modes such that 
  

! 

cos M1x + "M1
( ) = cos M 2x + "M 2

( ) = K = cos Mkx + "Mk
( ) where 

! 

Mk = M1 + 2" k #1( ) + $M1
# $Mk

( ) x% &.  Note the recursive nature of this modal relationship.  If 

! 

2" k #1( ) + $M1
# $Mk

( ) x% & < 2" k #1( ) x% & , or rather 2!" <<
k

 for all k , then the recursive modal 

relationship is explicit, rather than implicit, in nature.  This taken altogether allows for continuity to be 
approximately satisfied in an aggregate/collective manner for the higher modes.  There are perhaps an 
infinite number of possible functional series with the required convergent properties.  Arguably, the 
simplest choice for such a series, however, is the one advanced in this paper for application to the present 
problem.  Proceeding in this manner, the third and fourth higher-mode continuity constraints can be 
captured by the following alternating sum expression  
 



! 

" m( ) =
#1( )

m+1

m
 

 
Such that, as assumed earlier 

! 

fm t
•( ) = " m( ) f m, t•( ) , the following holds  

 

! 

fm t
•( ) =

"1( )
m+1

m
f m, t

•( )  

 (38a-b) 
 

This expression can be seen to readily to satisfy the third and fourth constraint for continuity, for the higher 
modes, as long as, in addition to the other limitations noted above, 

! 

f m, t
•( )  is not separable with respect to 

! 

m  and 

! 

t
• .  I.e., 

! 

f m, t
•( )  is not separable in the sense that multiplier terms of the form 

! 

m
j , where 

! 

j  is any 

arbitrary integer such that 

! 

j " 0 , cannot generally be extracted it.  If 

! 

f m, t
•( )  were separable in this unique 

sense, such that 

! 

m
j  multiplier terms could be extracted, then the desired convergence properties for the 

overall functional series would be lost and higher-mode continuity could not be satisfied.   
 

Given this higher-mode functionality of 

! 

f m, t
•( )  and 

! 

"m r
•
, t

•( ) , the result as to the turbulent 

fluctuation velocities is as follows  
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Where  

! 

M = 2 " M 2# $ 
 (39a-d) 

 
Having gained improved insight into the higher-mode functional dependence (with respect to 

! 

"  and 

! 

z
•) 

of •
rv̂ , •

!v̂ , and •
zv̂ , the functionality with respect to the radial coordinate, •

r , will now be examined.   
Solving Eq. 37a gives the expression  
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g r
•
, t

•( ) " #

r
•
$ exp B r

•( )dr•%& ' ( 
) 
* 
+ , A( )  

Where  
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" A( ) #

u A $%( )
or

" m,A( ) =
1

2
1+ erf & 0m A $%( )( ){ }
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( 

) 
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* 

) 
) 

 

 (40a-b)  



 
Where 

! 

" is an arbitrary constant with respect to 

! 

r
• .   The first formulation for 

! 

" A( )  is a discontinuous cut-
off of the vortex turbulent fluctuation; this is all that the governing equations, Eq. 15a-c, can explicitly 
reveal about the dependence of the radial “boundary” of the turbulence distribution with respect to the 
parameter A .  However, it more physically realistic to anticipate that some sort of smoothing of this 
turbulence cut-off boundary occurs, in this case an arbitrary smoothing function is defined with the second 
functional formulation for 

! 

" A( ) , with 

! 

" 0  an arbitrary constant defining the effective slope of the 
smoothing function.  When the mean flow parameter 

! 

A  drops below a certain value the turbulence is 
assumed to drop to zero and/or some background level.  The governing cut-off constant, 

! 

" , is set to some 
small value.  For the work performed in this paper 

! 

" < 10
#4 .  Application of this cut-off function is 

analytically justified in that the governing turbulent fluctuation linear partial differential equations, Eq. 15a-
c, fundamentally change in nature as 

! 

A" 0.  Application of the cut-off parameter 

! 

" , in this context, is 
analogous to defining displacement and/or momentum thicknesses in classic integral boundary-layer 
theory.  Note that a modal dependency, the coefficient 

! 

m  in the error function term, has been introduced in 
the second formulation of the cut-off function.  This modal dependency is essential for preserving 
continuity, while at the same time smoothing out any jumps in turbulence in the outer “boundary” of the 
vortex.   
 

Given Eq. 23b for 

! 

B , the following holds  
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 (41) 
 
The above expression for 

! 

g r
•
, t

•( )  satisfies Eq. 37a, and therefore its contribution to preserving 

continuity, but it exhibits a non-physical singularity at 

! 

r
•

= 0 .  This problem can be eliminated by re-
introducing a modal dependence into 

! 

g r
•
, t

•( ) , i.e. 

! 

g r
•
, t

•( ) " g m,r
•
, t

•( ) , and then applying the higher-

mode continuity constraints to 

! 

g m,r
•
, t

•( ) .  Note that re-introduction of a modal dependence to 

! 

g r
•
, t

•( )  

does not conflict with the earlier analysis results in the paper.  Therefore, given the Eq. 41 result, the 
derived functional relationship is recast with added exponential terms to de-singularize it.   
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•( ) =
"

r
•
v#

•
$ m,r

•( )% A( ) 

 
Where it is conjectured that the functionality of the 

! 

" m,r( )  multiplier function is given by  
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 (42a-b) 
 

This recast formulation of the radial distribution eliminates the singularity at 

! 

r
•

= 0  without violating 
continuity.  As a minimum, the functionality of 

! 

" m,r( )  must accommodate the following requirements: 



! 

" # m,r
•( )$ 

% 
& ' 

( 
) "r• *m#* r•( ) , 

! 

" # m,r
•( )$ 

% 
& ' 

( 
) "r• * 0  throughout the range 

! 

0 " r
•

< 1, 

! 

" 1,r( )# r
•( )
2

 as 

! 

r
•
" 0, and 

! 

" m,r( ) = 1 as 

! 

r
•

= 1.   Additionally note the required functionality of the cut-off function, i.e. 

! 

" # m,A( )( ) "r•
$m#* A( ) .§§§ 

The semi-arbitrary functional relationship, Eq. 37b, for the 

! 

h r
•
, t

•( )  needs to be augmented with a more 

precise means of derivation, this will be accomplished by considering the vorticity component definitions 
directly. The derivation of the following equation is detailed in Appendix C.  In summary, though, this 
more precise relationship is  

 

! 

"

"r•
h m,r

•
, t

•( ) + 1+ dm # 1+ A( ){ }g m,r•
, t

•( ) $ 0  

 (43) 
 
Note that a modal dependence is intrinsic to this function, i.e. 

! 

h r
•
, t

•( ) " h m,r
•
, t

•( ) .   Further, the ratio of 

the functions 

! 

" m,r•
, t

•( )  and 

! 

f m, t
•( )  have been approximated by means of the introduction of the modal 

constants 

! 

dm  as well as retention of the prescribed radial function of 

! 

" m,r•
, t

•( ) , i.e. 

! 

" m,r•
, t

•( )#1+ A .   

 
In general, Eq. 43 does not appear analytically tractable.  It could, of course, be solved for numerically, 

but an alternate, approximate analytical approach is instead proposed.  From previous work, Eq. 37b, a 
semi-arbitrary partial solution to 

! 

h r
•
, t

•( ) , i.e. 

! 

h r
•
, t

•( )" Ag m,r
•
, t

•( ) r
•  has been defined.   Given this 

earlier result, it is assumed that the complete solution for 

! 

h r
•
, t

•( )  is of the form  

 

                                     
§§§ The higher-mode continuity constraints, Eq. 37c-d, are key to the desingularization of Eq. 41.  This will be validated by direction 
of Eq. 42a into Eq. 37a.  Essentially, continuity in the inner core of the vortex, for 

! 

r
•

< 1, is fully contingent upon exercising the 
higher-mode continuity constraints previously identified.  For 

! 

r
•
" 1 the higher-mode continuity constraints do not need to be invoked 

to satisfy continuity  
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Because the residual terms of the Eq. 37a have coefficients of 

! 

m  modal number, therefore, application of the higher-mode continuity 
constraints, Eq. 37c-d, will cause these terms to vanish as the modal contributions to the continuity equation are considered in an 
aggregate (even-order finite-sum) manner.   



! 

h m,r
•
, t

•( ) =
A

r
• +" m,r

•( )
g m,r

•
, t

•( ) + c  

 (44) 
 

Where 

! 

c  is an arbitrary constant, and, further, 

! 

" m,r
•( )  is an unknown function that will be solved for in 

the following analysis.   
 
Substituting Eq. 37b into Eq. 43 yields the following  
 

! 

"#

"r•
$ r

• +#( ) % 1
A

"A

"r•
$ r

• +#( ) % 1
g

"g

"r•
$
1

A
r

• +#( )
2

1+ dm % 1+ A( ){ } +1= 0  

 (45) 
 

Where, for brevity, the following abbreviated nomenclature is employed: 

! 

" #" m,r
•( )  and 

! 

g " g m,r
•
, t

•( ) .  

The unknown function 

! 

" m,r
•( )  is of negligible magnitude except as 

! 

r
•
" 0; therefore, Eq. 45 will only be 

evaluated, in asymptotic sense, at 

! 

r
•
" 0.  At this asymptotic condition, the following limit values are 

approached for the various quantities contained in Eq. 45: (1) 

! 

" # constant , (2) 

! 

A"#1, (3) 

! 

"A "r•
# 0 , 

(4) 

! 

g" constant , and (5) 

! 

"g "r•
# 0.  Therefore, given the asymptotic behavior of these key parameters, 

Eq. 45 reduces to the following simple ordinary differential equation  
 

! 

"#

"r•
+# 2 +1 $ 0 

 (46) 
 

The above ordinary differential equation is a particular case of the special Riccati equation.  This equation 
has a simple solution applicable to the problem being studied, which is 

! 

" = " m,r
•( ) = " r

•( ) = cot r•( ) .   

This solution must be limited in application to the range 54~0 !<<
•
r  in order to avoid a non-physical 

sign reversal in 

! 

h m,r
•
, t

•( ) .  Further, the constant 

! 

c  has been set to zero.  Therefore, the final form of the 

! 

h m,r
•
, t

•( )  expression is  

! 

h m,r
•
, t

•( ) " A

r
• + cot r•( )

g m,r
•
, t

•( )  

 (47) 
 
Some of the time functionality of the turbulent flow is captured in the derivation of the expression for 

! 

g r
•
, t

•( ) .   However, this is, so far, only a partial solution.  The remaining functionality with respect to 

time for the turbulent fluctuation velocities •
rv̂ , •

!v̂ , and •
zv̂  needs to be defined in terms of the additional 

time-dependent functions 

! 

f m, t
•( )  and 

! 

"m t
•( ) .  This will partly be accomplished by first noting that, 

though the large-Reynolds-number approximation was initially invoked to derive the turbulent fluctuation 
velocity solutions, ideally the heat conduction equation for all three velocity components should be (at least 
approximately) satisfied, so as to approximately satisfy the complete Helmholtz vorticity transport 
equations.  Relying on the trigonometric identity, 

! 

sin x ± y( ) = sin x cos y ± cos x sin y , as partially or quasi 
separable solutions for the turbulent fluctuation velocities have been derived, therefore the turbulent 
fluctuation velocity solutions can be recast as  
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 (48a-c) 
 
Derivation of the ( )•tf

m
 functions is critically important.  If left unchecked, without ( )•tf

m
, the turbulent 

kinetic energy would eventually grow infinitely large.  This is, of course, not physically valid.   A 
“relatively quasi-steady” approximation is implied in Eq. 48a-c, i.e. 

11

~
ÙÙ ! , 

11

~
XX ! , etc.  “Relatively 

quasi-steady,” in this particular context, implies that ( )( ) ••

•
!!>>!! tttf

m 1

~
Ù , ( )( ) ••

•
!!>>!! tttf

m 1

~
X , etc.  This is 

reasonable assumption for two reasons.  First, ( )( ) •

•
!! ttf

m
 must be large in order to check growth in 

turbulent kinetic energy and keep it from becoming infinite in magnitude.  Second, ( )•tf
m

 is the means by 
which high-frequency oscillatory content is introduced for the turbulent fluctuations; this oscillatory 
contribution, by definition, implies large values, in terms of absolute magnitude, of ( )( ) •

•
!! ttf

m
.  Given this, 

if the following approximations are reasonably accurate  
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 (49a-f) 
 
Where 

! 

C" , 

! 

C" , 

! 

C" , etc are arbitrary constants in the above; these constants are an assumed consequence 
of the differentiation operations in the Laplacian.  Then, as a consequence of the heat conduction equation 
requirement, and the length scale factor velocity and vorticity linear relationships, the following should 
hold   
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 (50a-b) 
 

The functionality of 

! 

˜ " 1 , 

! 

˜ " 2 , 

! 

˜ " 1, 

! 

˜ " 2 , 

! 

˜ " 1, and 

! 

˜ " 2  have already been pre-established with the analysis 
performed earlier.  C  is an arbitrary constant required to be consistent with the assumed approximate 
requirements, Eq. 48a-c, necessary to satisfy the spatial aspects of the heat conduction equation.  However, 



to some degree, the accuracy of the resulting spatial approximation has only a secondary influence on the 
validity of Eq. 50a-b and, in turn, the temporal functionality of the turbulent fluctuation solutions.    
 

It will be assumed that 

! 

"m t
•( )  is a stochastic function estimated at discrete instantiations and, 

therefore, does not have any time dependency in a conventional sense.   Therefore, the time derivative as 
applied to terms containing 

! 

"m t
•( )  in Eq. 50a-b can be ignored.  Therefore, Eq. 50a-b reduces to  
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 (51) 
 
Given the above simple first-order ordinary differential equation, and noting that the elemental solution 

is 

! 

f m, t
•( )"#meCmt

•

, 

! 

Cm  can represent a set of constants comprised of complex numbers.  Therefore, the 

complete time functionality can be described in following general series form  
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f m, t
•( ) " #mn e

$amn t
•

$ e$bmn t
•% 
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( 
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* cos cmnt

•( )wP
n=1

N
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 (52) 
 

Note that, in the above, that for each mth mode there are 

! 

1" n " N  series terms that define 

! 

f m, t
•( ) .  

Further, the series is comprised of exponential and sinusoidal terms (recognizing that the complete solution 
can be comprised of the product of exponentials having complex number arguments).  The coefficients, 
mnc , in the sinusoidal terms represent the “modal” natural frequencies for the turbulent fluctuations.  

Lower modal frequencies correspond to coherent structures in the flow.  Higher modal frequencies 
correspond to isotropic homogeneous turbulence.  A natural fundamental frequency, ! , of the flow is 
given by 

0
0

2
!
=="
t

rr
c

rv #$  or ( )202 cr!"#$  for an initially uniform vorticity distribution.  This 

fundamental frequency is sometimes referred to as the “turn over rate,” e.g. Ref. 3.  It follows that a 
nondimensional version of 

! 

"  is given by 

! 

"
• = Re 2#( )

2 .  The coefficients mnc  can be related to this 

proposed fundamental frequency by the assumed expression 

! 

cmn " n#
• .  The anticipated initial and final 

conditions for the turbulent fluctuations are: (1) for 0=
•
t , then 

! 

f m, t
•( ) = 0 , i.e. the flow is initially 

laminar; (2) for !"
•
t , then 

! 

f m, t
•( ) " constant # cos cmnt•( )  where some (higher mode) fluctuations 

have not dampened out, or, alternatively, 

! 

f m, t
•( ) = 0  where the (mid-range mode) fluctuations have 

dampened out.  This further dictates that 

! 

amn < bmn  -- where, in most cases, the difference in value 
between the two coefficients is quite small. i.e. 

! 

amn " bmn
# .  Specifically, it is anticipated that 

! 

amn " bmn #$ 1+ n( )  where 

! 

"  is some small arbitrary constant offsetting the two sets of coefficient 
values.  This sensitivity of the relative ratio of the coefficients 

! 

bmn  and 

! 

amn  -- as to turbulent fluctuations 
dampening out or continuing to sustain oscillations -- implies a critical sensitivity to initial condition that is 
a key feature of turbulent flows in general.   To yield a convergent series, to avoid infinite turbulent kinetic 
energy, it is also required that 

! 

"mn #1 1+ n( )
x  where, as a minimum, 

! 

x " 1.  The assignment of specific 
values for 

! 

x  has significant implications for the resulting estimates of the turbulence energy spectrum.   
Additionally, note the introduction of a stochastic function, 

! 

wP .  This stochastic function returns a random 



value for each instantiation, or a point-wise (spatiotemporally) estimate, of the turbulent fluctuation 
velocity; further, a normal distribution is assumed for 

! 

wP , where the distribution is centered about 

! 

wP = 1.   
 
The analysis for deriving the functionality of the turbulent fluctuation velocities is complete except for 

defining the unknown constants and coefficients incorporated in the analysis.  A major future challenge for 
the analysis methodology, which is outside the scope of this paper, is the rigorous definition of the 
coefficients included in the function 

! 

f m, t
•( )  and other constants/parameters identified along the way.  

Resolution of this problem will be dependent, in part, in defining physically relevant initial and asymptotic 
value conditions for the mean flow behavior of the turbulent vortex model.  But, there is also the issue of 
how to define the higher-mode coefficients.  It is likely that the approach for defining these unknown 
constant coefficients for the derived analytical expressions for the turbulent fluctuation velocities, 

! 

ˆ v r
• , 

! 

ˆ v "
• , 

and 

! 

ˆ v z
•  will still need to be semi-empirical in nature as it is in other turbulent flow models, and turbulence 

closure schemes, in general.   
 
Next, the derivation of the turbulent mean flow contribution, 

T
v!" , will now be performed.  It is at this 

point in the paper that deterministic solutions have to give way to analysis based on stochastic processes.  
The following holds  
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"v#T
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T

ˆ v # d$

t

t+T

%  

 (53) 
 
Where 

! 

T  is some small, but statistically relevant, incremental period of time to perform the time 
integration of the turbulent fluctuation solution to yield the mean flow.  The above integral is evaluated in 
some arbitrary 

! 

" # z  plane.  Note, additionally, that as a consequence of the length scale factor  
 

  

! 

"#$
T

= %"v$
T

l & 0  (54) 
 
In order to not invalidate the turbulent fluctuation governing equations, i.e. the set of three linear partial 

differential equation, Eq. 15a-c this contribution has to be assumed to be small, i.e. 

! 

"#
•

= $"#
T

<< ˆ " #
• , as 

noted earlier in the paper.  Further, by definition, for the particular class of turbulent line vortex being 
studied that  
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t
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 (55) 
 
The above is a direct consequence of the length scale factor methodology and the attendant assumptions 
implicit in the primary governing equations, Eq. 15a-c, used in this paper to derive the turbulent fluctuation 
solutions.  Simply put, the particular turbulent vortex model derived in this paper has a normalized axial 
vorticity distribution that is invariant with respect to the turbulence state of the vortex, i.e. the axial 
vorticity distribution is laminar-like and, further, always equivalent to the laminar distribution derived in 
Appendix B.  In turn, that also dictates that the vortex circulation distribution is also laminar-like.  
However, because of accelerated vortex “aging,” as a result of the turbulent flow state, the axial vorticity 
and vortex circulation distributions have “diffused” significant more than would happen if the flow were 
wholly laminar.  This will be discussed in more detail later.   

 
Returning now to the tangential velocity turbulent mean flow derivation, the only way a net change in 

the tangential velocity profile can be effected is for there to be an effective skewed offset in the tangential 
velocity fluctuations, i.e. the turbulent fluctuations being on whole more positive than negative in sign.  



Correspondingly, the reason why 0== zr vv , or as a minimum 

! 

vr

•
<< ˆ v r

• , 

! 

vz
•

<< ˆ v z
• , 

! 

"r
•

<< ˆ " r
• , and 

! 

"#
•

<< ˆ " #
• . is because these turbulent velocity components, rv̂  and zv̂ , are not skewed positive in a 

similar manner as was done for the 

! 

ˆ v "  solution by means of the 

! 

" m, t•( )  function.    

 
An analysis by means of stochastic calculus formalism will not be performed in this paper to define the 

mean turbulent flow properties.  Instead an informal heuristic analysis will be performed.  Assume for the 
moment that certain parameters/functions in the to-this-point deterministic framework can have an element 
of stochastic functionality incorporated into them.  Specifically, it is assumed that the phase angle function 

! 

"m t
•( )  is either a continuous Brownian process or a discrete random-walk.   There are other 

parameters/functions in the 

! 

ˆ v "  solution that could have stochastic attributes to them, specifically 

! 

f m, t
•( ) , 

in the form of the normal distribution random function 

! 

wp , but a phase angle Brownian “shifting,” is 
asserted as the primary mechanism for yielding mean turbulent flow properties.  Assume further that the 
integration time-period, 

! 

T , is of sufficient duration such that Brownian shifting of the phase angle will 
result in a uniform probability distribution for the phase angle, across the feasible range of 

! 

0 "#m t
•( ) < $ , 

when taking into account symmetry considerations.   Note that 

! 

"m t
•( )  is estimated on an ensemble basis, 

i.e. it is estimated only once for each unique value of time and not for each spatiotemporal point.  Further, 
as the mean turbulent flow should only be a function of radial coordinate, the radial distribution can be 
evaluated at arbitrary 

! 

"  and 

! 

z
•  coordinates; for simplicity, those coordinates are chosen to be 

! 

" = 0 and 

! 

z
•

= 0 .   Accordingly, the following must hold true  
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 (56) 
 
Assuming that each of the oscillatory and or stochastic functions have their own independent time-scale 

with respect to each other, therefore, each function can have a mean value associated with it that is 
independent with respect to the other oscillatory/stochastic functions.  Given, that a mean value can be 
established for each oscillatory and/or stochastic function, the mean value theorem of integral calculus can 
be applied.  As, 

! 

"m #( )  is stochastically uniformly distributed over the range 

! 

0 "#m t
•( ) < $ , a mean value 

substitution for the 

! 

sin "m #( )( ) = 1 $( ) sin xdx
0

$
% = 2 $  term in the time-integral.  Further, the mean flow 

contribution from the 

! 

fm t
•( )  function can be directly evaluated if the coefficients in the function were 

fully enumerated, but a simpler approach and one more consistent with correlation with experimental 
turbulent vortex measurements is to subsume the functionality of the 

! 

fm t
•( )  function – and its decomposed 

contributory elemental functions 

! 

" m,r•
,#( )  and ( )!,mf  -- into a RMS-like parameter, i.e. 

! 

"# , or, more 

specifically, the nondimensional turbulence 

! 

fm t
•( )"#$ 1+ A( ) .  Therefore,  

 



! 

"v#T
• =

1

T
•

$1( )
m+1

m
g m,r

•
,%( ) & m,r•

,%( ) + f m,%( )
' 
( 
) * 

+ 
, sin -m %( )( )

m=1

M

.
/ 

0 
1 

2 1 

3 

4 
1 

5 1 
d%

t•

t
•+T•

6

7
1

T
•
8g r•

, t
•( ) 8sin -m %( )( ) 8

$1( )
m+1

m
& m,r•

,%( ) + f m,%( )
' 
( 
) * 

+ 
, 

m=1

M

. 8T •

7
2

9
:& 8 1+ A( )g r•

, t
•( )

 

 (57) 
 

Note that, in the above, the aggregate modal contribution of 

! 

g m,r
•
,"( )  has been assumed, for the purposes 

of the estimating the mean flow characteristics, to be reasonably approximated by considering its non-
modal form, 

! 

g r
•
,"( ) , Eq. 41.   
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The two constants/parameters 

! 

" and 

! 

"#  could be subsumed into one parameter, but are kept distinct in the 
following analysis for the objective of preserving clarity with earlier analysis in the paper.    

 
The result for the turbulent contribution to the mean tangential velocity profile (and the mean tangential 

vorticity) is an unexpected quadratic polynomial solution, thus suggesting that are two real possible 
solutions to the mean turbulent flow.   
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 (59) 
The physically meaningful solution is  
 

! 

"v#T
• $

1

2
v#L

•( )
2

+
8%%&
'

(
) A( )

r
•
1+ A( )

* 

+ 
, 

- 

. 
/ 0 v#L

•
1 

2 
3 

4 3 

5 

6 
3 

7 3 
 

 (60) 
 
Not only does the introduction of the term 

! 

1+ A( ) , embodied in the definition of the 

! 

" m,r•
,#( )  function, 

eliminate any form of singularity for 

! 

"v#
T

•  but it also insures that 

! 

"v#
T

•
$ 0  as 

! 

r
•
" 0.  Note that 

absolute- or RMS-value tangential turbulence parameter, 

! 

"# , can be derived from empirical observations, if 
need be.  The 

! 

"#  parameter is, in general, time-dependent.  The following approximation can be used to 
estimate 

! 

"# .   
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 (61a-b) 

 
Where the exponential constants must satisfy the constraint 

! 

b > a  and, further, a new constant/parameter, 

! 

", has been introduced to help prescribe the anticipated “peak” tangential turbulence implicit in the mean 
flow profile.  Alternatively, an approximate dependence between the parameter 

! 

"# , the turbulence 

skew/offset constant ! , and the first (dominant) radial mode 

! 

f 1, t
•( )  can be established.  Finally, it is 

important to re-emphasize at this point that the turbulent contribution to the vortex mean flow also 
influences the turbulent fluctuation solutions via the 

! 

A , 

! 

B , and 

! 

C  parameters employed in the turbulent 
fluctuation governing equations, Eq. 15a-c.  Thus the mean flow and the turbulent fluctuation solutions are 
based on coupled, and not independent, sets of equations.  Therefore, the both sets of solutions need to be 
iterated upon together until satisfactory convergence is achieved.   

 
Equations 60-61 provide an approximate analytic solution of the tangential velocity mean flow 

distribution.  A direct numerical solution of Eq. 53 could also be performed so as to arrive at a nominally 
more accurate estimation of the profile.  The same general type of mean-value approximations that were 
used to define the mean-flow expression for the tangential velocity distribution can also be employed to 
derive absolute expressions for the turbulence and Reynolds shear stress distributions.  Note, also, a nuance 
is suggested in which for the definition/derivation of the Reynolds shear stresses it is assumed that each 
modal component of the two fluctuation velocities are multiplied together to yield a modal product before 

summation to yield an aggregate quantity.  In this manner, it is insured that 

! 

ˆ v r
•

ˆ v z
•
" ˆ v r

•
# ˆ v z

• , etc., which is 

consistent with physical observations.   The resulting expressions are  
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The mean flow and turbulent fluctuation solutions are not yet complete, though.  The current 

formulation does not constrain the flow to having conserved or decreasing total kinetic/mechanical energy 
with time.  In fact, the opposite is true; currently the analysis results in a large initial growth in total 
kinetic/mechanical energy for the vortex.  This is, of course, not physically realizable.  To address this 
problem it is necessary to introduce the concept of “accelerated aging” of the vortex when in a state of both 
transition and fully developed turbulent flow.   This accelerated aging comes in the form of defining an 
“effective time” in the form of 

! 

teff
•

"#t• where 

! 

"  is a constant such that 

! 

" # 1.   Note that this constant is 
analogous to the Squire constant, e.g. Ref. 20 and 23, though no assumptions as to eddy viscosity 
functionality need be made.   Consequently, in comparing laminar and turbulent vortices, a laminar vortex 
flow characteristics would be evaluated at time 

! 

t
•  and a turbulent vortex would be evaluated at time 

! 

teff
•  

for a physically realistic comparison to be made.  There is no definitive approach that suggests itself so as 
to determine this vortex “aging” constant.  Conservation of total kinetic energy, i.e. the total energy being 
constant, cannot be assumed because of viscous dissipation of such energy.  It would seem, as a minimum, 
though, that an inequality relationship of the following form could be posited.   
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It is further conjectured that a specific limiting case of vortex kinetic energy “conservation” is of 

particular interest.  This limiting case is as follows  
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Admittedly there is more artifice than rigor to the above relationship, but, as will be seen, the net result 

is an important insight into turbulent vortex evolution.  What perhaps provides Eq. 64 its greatest utility, 
though, is that it makes the subsequent mathematical analysis very tractable.   Making the appropriate 
substitutions, the following expression is yielded  

 

! 

r
•
v"L

•( )
2

dr
•

0

#

$
t
•

% r
•

v"L
•( )

2

+
8&&'
(

)
* A( )

r
•
1+ A( )

+ 
, 
- 

. 
/ 
0 
dr

•

0

#

$
teff
•

 

 (65) 
 
The integration of the rightmost term can be approximated by means of the mean value theorem of 

calculus whereby the following holds: 
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approximately symmetrical about 
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r
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Next assume that the mean tangential velocity profile can be approximated by the Lamb-Oseen profile, 

i.e. 
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Equation 67 has solutions in terms of exponential integrals.  Therefore, integrating and simplifying  
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Note that 

! 

Ei "#( ) = 0 and 

! 

Ei 0( ) = "#, e.g. Ref. 27.  This latter singularity of 

! 

Ei x( )  has to be handled with 
caution.  Or  
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The limiting value of the left-hand-side of Eq. 69 as 

! 

r
•
" 0

#  needs to be determined.  This can be 

established by noting that 
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Ei x( ) = C + 1 2( ) ln "x( ) + x
k
k # k!
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$
%  for 

! 

x < 0, where 
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C  is the Euler 

constant, e.g. Ref. 14.   Further, note that 
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#
$ % 0  as 
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x" 0 .  Therefore, this implies that 
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#.   Making this substitution into Eq. 69 gives  
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Recasting the above equation yields the following quasi-linear relationship between 

! 

teff
•  and 

! 

t
• .   
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Assume that the vortex core radius can be approximated by the relationship 

! 

rc
•
teff
•( ) " 1+ 4#Lteff

• , 

where 

! 

"L = 1.25643... is the Lamb constant, e.g. Ref. 23.  Therefore, making this final 
substitution/approximation gives  
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For small values of nondimensional time, the above relationship yields a Squire-like (Refs. 20 and 23) 

near-constant ratio of apparent to actual viscosity to account for turbulent flow effects on the time evolution 
of the turbulent mean flow characteristics of a line vortex, i.e., 

! 

teff
•

"#t• for 

! 

t
•
" 0 where 

! 

" # exp 16$$% &( ) .   As time increases, though, significant nonlinear effects have to be accounted for in 
the evolution of the turbulent vortex.  Further, it must be pointed out that even at small values of 
nondimensional time “

! 

" ” is not an actual constant, this is because the parameter 

! 

"#  has its own time 

dependence, Eq. 61.  For example, when 

! 

t
•

= 0 , and the vortex is in its initial laminar flow state, then 

! 

"# = 0  and, therefore, as required for fully laminar flow, 

! 

" = 1, given the above derived Eq. 72.    
 
This concludes the discussion in this paper of the turbulent flow contribution for a line vortex.  The 

analysis to this point can only be considered phenomenological in nature.  This both the consequence of the 
approximations employed in the analysis as well as, most importantly, the lack of a rigorous methodology 
defined so far as to definitively assigning values to the large set of coefficients and constants embodied in 
the analytical treatment.   It is likely that a combination of invariant quantities, new conservation laws, and, 
inevitably, some amount of empiricism will be required to transform this phenomenological analysis to a 
truly predictive model.  The analytical derivation of the laminar basic flow solution will next be 
summarized in Appendix B.    

 
 
 

Appendix B – Summary of Laminar/Basic-Flow Solution 
 
A laminar basic flow solution was derived in Ref. 4 that describes an initially Rankine-like vortex 

which evolves with time to a Lamb-Oseen profile.  This solution was originally derived to study the vortex 
reconnection problem.  However, it also defines an exact laminar solution for a columnar vortex with an 
initially uniform core axial vorticity distribution.  This derivation will be summarized herein this appendix.  
Considering a point source formulation (in polar/cylindrical coordinates) of the problem, which is  
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Where, from Ref. 9, the following holds  
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A line source expression can be defined as such  
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Substituting this line source expression, Eq. 75, into Eq. 73 gives  
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Also, from Ref. 9, the integration with respect to 

! 

"*  follows 
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Not unexpectedly, because of the problem being cast in polar/cylindrical coordinates, a modified Bessel 
function of the first kind of zeroth order, 

! 

I0 x( ) , manifests itself in the above expression.  The final form of 
axial vorticity solution will be expressed in terms of a series expansion of elemental functions.  Noting 
from Ref. 9, for example, the following series definition of the modified Bessel function  
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Substituting the above modified Bessel series expression into Eq. 77  
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Noting the following integral formula from Ref. 13  
 

! 

x
2m+1

e
"a 2x 2

dx# = "
x
2m
e
"a 2x 2

2a
2

$
m!

m " k( )! ax( )
2k

k=0

m

%  

 (80) 
Then the following holds  
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Or, defining the new function 

! 

E0 a,r, t( )  and applying the integration limits yields  
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The derived solution provides accurate estimates of finite-core vortex filament vorticity for the assumed 
vortex core structure with uniform vorticity at 

! 

t = 0.   
 

Proceeding next with the tangential velocity expression derivation, the tangential velocity is given by 
the following general equation  
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The following holds  
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Or, performing the required integration yields  
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Which, given the Eq. 80 integral formula, yields  
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Now noting that the integration constant, C, is derived by the boundary constraint that 

! 

v" = 0  at 

! 

r = 0, 
therefore, the tangential velocity expression is given by  
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Equations 82 and 87, the axial vorticity and the tangential velocity expressions, also provide an alternate 
model for an unsteady monopolar/columnar finite-core vortex filament.  The above partial finite-core 
vortex filament reconnection analytical work leads to expressions (for the case where 

! 

s = 0 ) that define a 
laminar, unsteady, two-dimensional finite-core vortex model that has an initially uniform axial vorticity in 
the vortex core.  The axial vorticity and tangential velocity distributions for this vortex model are given by 
the expressions noted below and follow simply from the work presented earlier:  
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Note that, of course, 

! 

vz = vr = 0  for this vortex model.  In this model the vortex tangential velocity 
distribution transitions from a Rankine-like profile to a Lamb-Oseen-like profile as time progresses.  
Because of numerical stability issues at very small values of time, 

! 

t" 0 , the alternate asymptotic 
expressions should be used for 

! 

t = 0.   
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The Aboelkassem model (Ref. 8) and the above uniform finite-core laminar vortex model all transition 

from a Rankine-like initial tangential velocity profile to a Lamb-Oseen profile over time.   They are two 
mathematically distinct but essentially functionally equivalent solutions.   

 
 
 
Appendix C – Assessment of the Approximation Implicit in the Analysis and Derivation of an 

Equation Critical to Defining the Axial Turbulent Fluctuation 
 
The semi-arbitrary functional relationship, Eq. 37b, for the 
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h r
•
, t

•( )  needs to be augmented with a more 

precise means of derivation, this will be accomplished by considering the vorticity component definitions 



directly.  In addition, the level of approximation in the turbulent fluctuation vorticity estimates for 
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•  will be qualitatively assessed by making the appropriate substitutions into these vorticity/velocity 

relationships.   In the analysis shown below it is first assumed that the implied functional relationships in 
these vorticity definitions are equally applicable to turbulent vorticity fluctuations.  Then the appropriate 
substitutions from previous work were made with respect to the derived intermediate forms of the turbulent 
fluctuation solutions. Then the higher-mode continuity constraints are applied such that 
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The above equation can only be exactly satisfied by a specific constraint – and/or test of approximation – 
on the mean flow parameter 

! 

C .  This constraint cannot be universally satisfied, and, so, the above result 
suggests that one of the fundamental approximations used to derive the turbulent fluctuation governing 
equations, that of 

  

! 

ˆ v r " #l ˆ $ r  is fairly accurate in the inner-core of the vortex, i.e. 

! 

r < rc t( ) , but is less valid 
for the outer-core of the vortex, as has been confirmed numerically.  Fortunately, the inner-core is where 
the bulk of the vortex turbulence is located.    
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The analysis of the above vorticity relationship yields two results.  The first result (I) can be used as an 
assessment of the level of approximation of assumed fundamental relationship 
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approximation.   This approximation is again valid primarily in the inner-core of the turbulent vortex, as 
has been confirmed numerically, wherein most of the vortex turbulence resides.  In this regards the 
approximation 
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 (92a-c) 
 
Collecting terms with and without 

! 

"  as a multiplier yields two new constraints and/or tests for 
approximation.  For brevity the following abbreviated nomenclature is used in defining the constraints: 

! 

" # " m,r•
, t

•( ) , 

! 

f " f m, t
•( ) , etc.  These constraints, like the others before them, cannot be universally 

satisfied, and, so, the above results suggest that all of the fundamental approximations used to derive the 
turbulent fluctuation governing equations, including the last one 

  

! 

ˆ v z " #l ˆ $ z  are fairly accurate in the inner-
core of the vortex, i.e. 

! 

r < rc t( ) , but is less valid for the outer-core of the vortex.  This result, like the 
others, has been confirmed numerically.   


